Synthesis of methyl α **- and fl-N-dansyl-o-galactosaminides, probes for the combining sites of N-acetyI-D-galactosamine-specific lectins***

WILLY R. KINZY^{1,§}, DAVID M. BELENKY¹, $\rm FRANK$ G. LOONTIENS² and NATHAN SHARON¹⁴

1Department of Membrane Research and Biophysics, The Weizmann Institute of Science, Rehovot, Israel 2Laboratory of Biochemistry, Faculty of Science, State University of Gent, B-9000 Gent, Belgium

Received 18 February 1992

The synthesis of the methyl α - and β -N-dansyl-D-galactosaminides is described using methyl α , β -2-azido-2-deoxy-D-galactopyranoside as starting material. This was reduced to the corresponding methyl α , β -2-amino-2-deoxy-D-galactopyranoside and then treated with dansyl chloride to yield a mixture of methyl α , β -N-dansyl-D-galactosaminides which was separated into individual anomeric forms by flash chromatography on silica gel. Methyl α -N-dansyl-D-galactosaminide was used as a fluorescent indicator ligand in continuous substitution titrations to determine the association constants of nonchromophoric carbohydrates with the N-acetyl-D-galactosamine specific lectin from *Erythrina coralIodendron.*

Keywords: N-Acetylgalactosamine, lectins, dansyl derivatives, spectroftuorimetry, association constants

Abbreviations: ECorL, *Erythrina corallodendron* lectin; MeeGalNDns, methyl 2-deoxy-2-(5-dimethylamino-1 naphthalenesulfamido)-x-D-galactopyranoside; MeßGalNDns, methyl 2-deoxy-2-(5-dimethylamino-1-naphthalenesulfamido)- β -D-galactopyranoside.

Dansyl (5-dimethylamino-l-naphthalenesulfonyl) derivatives of mono- and oligosaccharides are valuable probes for the combining sites of carbohydrate specific proteins, since their fluorescence increases markedly upon binding to such proteins. Thus, dansyl-substituted glycosides of oligosaccharides derived from nigeran have been used in studies of antibodies $[1]$, N-dansyl-D-glucosamine in studies of hexokinase [2] and N-dansyl-D-galactosamine in studies of the binding sites of several lectins specific for D-galactose and N-acetyl-D-galactosamine $\lceil 3-5 \rceil$. The latter probe has been prepared only on a milligram scale and has not been fully characterized. Moreover, the fact that it is a mixture of α and β anomers can limit its usefulness.

Here we describe the synthesis of the α and β anomers of methyl N-dansyl-D-galactosaminide. As starting material we used the α, β mixture of methyl 2-azido-2-deoxy-Dgalactopyranosides (1) [6]. Reduction yielded the corresponding α, β mixture of methyl 2-amino-2-deoxy-Dgalactopyranosides (2), which was treated with dansyl

chloride. The desired products, methyl 2-deoxy-2-(5 dimethylamino - 1 - naphthalenesulfamido) - α - D - galacto pyranoside (Mea $GaINDns$) (3) and methyl 2-deoxy-2-(5dimethylamino - 1 - naphthalenesulfamido) - β - D - galacto pyranoside (Me β GalNDns) (4) were fractionated by flash chromatography on silica gel. We also describe the use of $MeaGa$ lNDns as a fluorescent indicator ligand to determine the binding constants of simple carbohydrates with *Erythrina corallodendron* lectin (ECorL), the 3-dimensional structure of which, as a complex with lactose, has been solved [7]. A preliminary report on the synthetic work has been presented [8].

Materials and methods

All reagents were of the highest quality available. Melting points were determined with a Fisher-Johns apparatus, and are uncorrected. Microanalyses were performed at the Hebrew University of Jerusalem. ¹H-NMR spectra were recorded in ${}^{2}H_{2}O$, unless otherwise specified, with a Bruker-WH-270 spectrometer. Chemical shifts (δ) are expressed in parts per million (ppm) and coupling constants in Hz. Optical rotations were determined with a Perkin-Elmer 141 polarimeter. Fast atom bombardment

^{*} Dedicated to Hilde De Boeck (1958-1991).

[‡] To whom correspondence should be addressed.

[§] Present address: Central Research Laboratories, Ciba-Geigy AG, CH-4002 Basel, Switzerland.

mass spectrometry was analysed in a Finnigan TSQ-70 mass spectrometer by the Mass Spectrometry Center at the Technion, Haifa. UV measurements were made with a Uvicon 810 spectrophotometer.

Fluorescence spectra were taken with an Aminco SPF-500 instrument and are uncorrected. Fluorescence titrations [9, 10] were made with a fluorimeter constructed in the laboratory using a chopped light source (stabilized 150 W halogen lamp), lock-in phase detection, excitation at 365 nm and emission at wavelengths larger than 450 nm (Schott KV 450 filter).

ECorL was prepared by affinity chromatography on lactose-Sepharose [11]. The concentration of the lectin was determined spectrophotometrically at 280 nm. The optical factor of 1.53 mg⁻¹ cm² at 280 nm and M_r of 29,000 were used to calculate the molarity of the lectin solutions. The titration procedures and data analysis using the necessary concentrations at equilibrium have been described by De Boeck *et al.* [9, 10].

Results and discussion

Synthesis

Methyl 2-azido-2-deoxy-D-galactopyranoside (1) [6] (1.0 g, 4.29 mmol, α, β mixture at a 1:2 ratio as judged by its 1H-NMR spectrum, in 30ml anhydrous methanol) was hydrogenolysed over 10% Pd-H₂ (0.2 g) for 18 h at room temperature, and the suspension was filtered. The filtrate was evaporated *in vacuo* to give, after purification by flash chromatography [12] in chloroform-methanol, 1:1 by vol, syrupy 2 (0.6 g) R_F 0.51 in chloroform-methanolammonia, 5:4:1 by vol, which was used for the next step without further characterization.

To an aqueous solution of 2 (0.5 g, 2.42 mmol in 15 ml 0.2 M NaHCO₃, pH 8.5) was added dansyl chloride (Pierce Chemicals, USA; 1.3 g, 4.82 mmol in 5 ml acetone), and the mixture was stirred for 3 h at room temperature in the dark. The reaction was followed by thin layer chromatography (chloroform-methanol, 9:1 by vol); in this system, the starting material had an R_F of 0.00; when the reaction was complete, the mixture of two products, R_F 0.32 and 0.18, was poured onto ice and extracted several times with ethyl acetate. The organic layer was washed (water), dried $(MgSO₄)$ and evaporated under reduced pressure. The solid product (0.7 g) was fractionated by flash chromatography, using chloroform-methanol, 9:1 by vol, as eluant. Two fractions were eluted and crystallized, each from water and ethyl acetate-petroleum ether, to give 0.3 g of the α anomer 3 (28.3% yield, R_F 0.32 in chloroform-methanol, 9:1 by vol, and 0.82 in dichloromethane-methanol, 7:3 by vol) and 0.14 g of the β anomer 4 (13.2% yield, R_F 0.18 in chloroform-methanol, 9:1 by vol).

Data for compound 3: m.p. 194-196 °C; $[\alpha]_D^{21}$ -57.2 (c 1, methanol); $\varepsilon_{330} = 4.77 \times 10^3$. ¹H-NMR (C²H₃O²H): δ 8.55 (d, 1H, naphthyl); 8.30 (d, 2H, naphthyl); 7.68-7.50 (m, 2H, naphthyl); 7.21 (d, 1H, naphthyl); 3.94 (d, 1H, $J_{3,4}$ 2.73 Hz, H-4); 3.70 (d, 1H, $J_{1,2}$ 1.86 Hz, H-1a); 3.52 (dd, 1H, H-2); 2.88 (s, 6H, CH₃); 2.63 (s, 3H, OCH₃).

Analytical data. Calc. for $C_{19}H_{26}N_2O_7S$: C, 53.51; H, 6.14; N, 6.57; S, 7.52. Found: C, 53.55; H, 6.295; N, 6.5; S, 7.2.

Data for compound 4: m.p. 129-131 °C; $[\alpha]_D^{21}$ -120 (c 1, methanol); $\varepsilon_{330} = 4.75 \times 10^3$; ¹H-NMR: δ 8.28–8.12 (m, 3H, naphthyl); 7.51-7.43 (m, 2H, naphthyl); 7.04 (d, 1H, naphthyl); 3.90 (d, 1H, $J_{3,4}$ 2.8 Hz, H-4); 3.82 (d, 1H, $J_{1,2}$ 8.33 Hz, H-1 β); 3.64 (m, 3H); 3.46 (t, 1H, H-5); 3.18 (t, 1H, $J_{1,2} = J_{2,3} = 8.33$ Hz, H-2); 2.60 (s, 6H, CH₃); 2.13 (s, 3H, $OCH₃$).

Analytical data. Calc. for $C_{19}H_{26}N_2O_7S$: C, 53.51; H, 6.14; N, 6.57; S, 7.52. Found: C, 53.48; H, 6.44; N, 6.23; S, 7.79.

The molecular weight of the products was confirmed by fast atom bombardment mass spectrometry: for compound 3, $[M + H]^+$ at m/z 427.1 and $[M - H]^-\$ at m/z 425.6; for compound 4, $[M + H]$ ⁺ at m/z 427.0 and $[M - H]$ ⁻ at *m/z* 425.6. The ultraviolet absorption spectra were similar, with a slight difference in the absorption maxima (328.2 nm) for Me α GalNDns and 325.7 nm for Me β GalNDns) that was confirmed by the excitation spectra of free Me α GalNDns and Me β GalNDns. The concentration of these compounds was determined spectrophotometrically at their absorption maximum using the value $\varepsilon = 4.8 \times 10^3 M^{-1}$ [3], which is almost identical with the experimentally determined one.

Fluorescence measurements

The fluorescence intensity of $Me\alpha$ GalNDns and MeB GalNDns was enhanced in each case by more than three-fold upon binding to $ECorL$; data for the α -glycoside are shown in Fig. la. There is also a blue shift in the fluorescence emission maximum from about 550 nm to

Figure 1. (a) Increase in fluorescence intensity and blue shift of the fluorescence emission maximum of Me α GalNDns (2.2 mM, 0.4 cm \times 1 cm \times 4.5 cm cuvette, 820 µl phosphate buffered saline, 22.5 °C, spectrum labelled 0) upon addition of ECorL (310 μ M) in successive aliquots resulting in totally added volumes of 2, 6, 12 and 24μ l. (b) Effect on the fluorescence emission spectrum of a mixture $(844 \mu l)$ of 2.16 μ M Me α GalNDns and 8.8 μ M ECorL (spectrum 0) upon addition of N-acetyl-D-galactosamine (210 mM) in final total volumes of 5, 15, 35 and 80 μ l. The top curve (0) in panel b corresponds to the top curve (24) in panel a. Excitation was at 365 nm. PBS, buffer alone; L, lectin (8.8μ) in buffer; L + GalNAc, lectin (8.04 μ M) and GalNAc (13.8 mM) in buffer.

530 nm, as shown for Me α GalNDns (Fig. 1a). These fluorescent changes were carbohydrate specific, since they could be almost completely reversed upon addition of inhibitory sugars (Fig. 1b). Similar results were obtained with Me β GalNDns (data not shown).

Association constants for the fluorescent ligands were determined from direct titration data with ECorL (Fig. 2a), according to [4]. MexGalNDns and Me β GalNDns were found to have association constants of 4.6×10^5 M⁻¹ and 1.4×10^5 M⁻¹, respectively.

Binding of nonfluorescent, inhibitory carbohydrates was studied by monitoring their ability to displace $MeaGa$ INDns from its complex with ECorL in substitution titrations (Fig. 2). Mex $GalNDns$ was chosen as the fluorescent indicator ligand for substitution titration. Association constants for methyl α -D-galactopyranoside, methyl β -D-galactopyranoside, N-acetyl-D-galactosamine, lactose and N-acetyllactosamine were determined from displacement titration data giving values of 7.3×10^2 M⁻¹, 3.5×10^{2} M⁻¹, 9.3×10^{2} M⁻¹, 1.15×10^{3} M⁻¹ and 7.1×10^{3} M^{-1} , respectively.

Based upon the K_a values, MexGalNDns binds to the lectin three times better than MeB GalNDns, and methyl α -D-galactopyranoside binds twice as well as methyl β -D-galactopyranoside. The lectin, therefore, has a slight preference for α -anomers.

Figure 2. (a) Direct fluorimetric titration of MexGalNDns $(0.7 \text{ cm} \times 0.7 \text{ cm} \times 4.5 \text{ cm}$ cuvette, 22.5 °C , $821 \mu\text{J}$; $2.2 \mu\text{M}$) with ECorL (310 μ M). (b) Displacement titration of Me α GalNDns from its complex with the lectin by 9.9 mm N-acetyllactosamine (\blacklozenge) or 210 mm N-acetyl-D-galactosamine (\square) . The first data point of the substitution titration corresponds to the last data point of the direct titration. Measurements of fluorescence were at *525* nm.

Acknowledgements

We thank Mr Israel Jacobson, Dr Edward Konadu and Ms Regine Schaubach for their help in various stages of the synthetic work. WK is grateful to the Minerva Foundation for a postdoctoral fellowship (1986/7). The work of DB was supported by the Foundation for the Advancement of Mankind, and his stay in Belgium by a short-term EMBO fellowship. This study was supported in part by grants from the Israel Academy of Science and the US-Israel Binational Science Foundation (No. 3727).

References

- 1. Schepers G, Blatt Y, Himmelspach K, Pecht I (1978) *Biochemistry* 17:2239-45.
- 2. Lartey PA, Derechin M (1979) *Prep Biochem* 9:85-95.
- 3. De Boeck H, Lis H, van Tilbeurgh H, Sharon N, Loontiens FG (1984) *J Biol Chem* 259:7067-74.
- 4. De Boeck H, Loontiens FG, Lis H, Sharon N (1984) *Arch Biochem Biophys* 234:297-304.
- 5. Swamy MJ, Gupta D, Mahanta SK, Surolia A (1991) *Carbohydr Res* 213:59-67.
- 6. Jacquinet J-C, Sinay P (1987) *Carbohydr Res* 159:229-54.
- 7. Shaanan B, Lis H, Sharon N (1991) *Science* 253:862-6.
- 8. Kinzy W, Lis H, Sharon N (1988) *14th International Symposium on Carbohydrate Chemistry,* Stockholm, p. 358.
- 9. De Boeck H, Loontiens FG, De Bruyne CK (1982) *Anal Biochem* 124:308-13.
- 10. De Boeck H, Matta KI, Claeyssens M, Sharon N, Loontiens FG (1983) *Eur J Bioehem* 131:453-60.
- 11. Lis H, Joubert FJ, Sharon N (1985) *Phytochemistry* 24:2803-9.
- 12. Still WC, Kahn M, Mitra A (1978) *J Org Chem* 43:2923-5.